Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 20 de 70
Filter
1.
Lancet ; 401(10376): 568-576, 2023 02 18.
Article in English | MEDLINE | ID: covidwho-20236778

ABSTRACT

BACKGROUND: On the basis of low-quality evidence, international critical care nutrition guidelines recommend a wide range of protein doses. The effect of delivering high-dose protein during critical illness is unknown. We aimed to test the hypothesis that a higher dose of protein provided to critically ill patients would improve their clinical outcomes. METHODS: This international, investigator-initiated, pragmatic, registry-based, single-blinded, randomised trial was undertaken in 85 intensive care units (ICUs) across 16 countries. We enrolled nutritionally high-risk adults (≥18 years) undergoing mechanical ventilation to compare prescribing high-dose protein (≥2·2 g/kg per day) with usual dose protein (≤1·2 g/kg per day) started within 96 h of ICU admission and continued for up to 28 days or death or transition to oral feeding. Participants were randomly allocated (1:1) to high-dose protein or usual dose protein, stratified by site. As site personnel were involved in both prescribing and delivering protein dose, it was not possible to blind clinicians, but patients were not made aware of the treatment assignment. The primary efficacy outcome was time-to-discharge-alive from hospital up to 60 days after ICU admission and the secondary outcome was 60-day morality. Patients were analysed in the group to which they were randomly assigned regardless of study compliance, although patients who dropped out of the study before receiving the study intervention were excluded. This study is registered with ClinicalTrials.gov, NCT03160547. FINDINGS: Between Jan 17, 2018, and Dec 3, 2021, 1329 patients were randomised and 1301 (97·9%) were included in the analysis (645 in the high-dose protein group and 656 in usual dose group). By 60 days after randomisation, the cumulative incidence of alive hospital discharge was 46·1% (95 CI 42·0%-50·1%) in the high-dose compared with 50·2% (46·0%-54·3%) in the usual dose protein group (hazard ratio 0·91, 95% CI 0·77-1·07; p=0·27). The 60-day mortality rate was 34·6% (222 of 642) in the high dose protein group compared with 32·1% (208 of 648) in the usual dose protein group (relative risk 1·08, 95% CI 0·92-1·26). There appeared to be a subgroup effect with higher protein provision being particularly harmful in patients with acute kidney injury and higher organ failure scores at baseline. INTERPRETATION: Delivery of higher doses of protein to mechanically ventilated critically ill patients did not improve the time-to-discharge-alive from hospital and might have worsened outcomes for patients with acute kidney injury and high organ failure scores. FUNDING: None.


Subject(s)
Critical Care , Critical Illness , Adult , Humans , Critical Illness/therapy , Intensive Care Units , Hospitalization , Respiration, Artificial , Registries
2.
CHEST Critical Care ; : 100002, 2023.
Article in English | ScienceDirect | ID: covidwho-2309458

ABSTRACT

Background Cardiac function of critically ill patients with COVID-19 generally has been reported from clinically obtained data. Echocardiographic deformation imaging can identify ventricular dysfunction missed by traditional echocardiographic assessment. Research Question What is the prevalence of ventricular dysfunction and what are its implications for the natural history of critical COVID-19? Study Design and Methods This is a multicenter prospective cohort of critically ill patients with COVID-19. We performed serial echocardiography and lower extremity vascular ultrasound on hospitalization days 1, 3, and 8. We defined left ventricular (LV) dysfunction as the absolute value of longitudinal strain of < 17% or LV ejection fraction (LVEF) of < 50%. Primary clinical outcome was inpatient survival. Results We enrolled 110 patients. Thirty-nine (35.5%) died before hospital discharge. LV dysfunction was present at admission in 38 patients (34.5%) and in 21 patients (36.2%) on day 8 (P = .59). Median baseline LVEF was 62% (interquartile range [IQR], 52%-69%), whereas median absolute value of baseline LV strain was 16% (IQR, 14%-19%). Survivors and nonsurvivors did not differ statistically significantly with respect to day 1 LV strain (17.9% vs 14.4%;P = .12) or day 1 LVEF (60.5% vs 65%;P = .06). Nonsurvivors showed worse day 1 right ventricle (RV) strain than survivors (16.3% vs 21.2%;P = .04). Interpretation Among patients with critical COVID-19, LV and RV dysfunction is common, frequently identified only through deformation imaging, and early (day 1) RV dysfunction may be associated with clinical outcome.

3.
Respir Care ; 2021 Jul 07.
Article in English | MEDLINE | ID: covidwho-2301618

ABSTRACT

BACKGROUND: Awake prone positioning (APP) has been advocated to improve oxygenation and prevent intubation of patients with acute hypoxemic respiratory failure due to coronavirus disease 2019 (COVID-19). This paper aims to synthesize the available evidence on the efficacy of APP. METHODS: We performed a systematic review of proportional outcomes from observational studies to compare intubation rate in patients treated with APP or with standard care. RESULTS: A total of 46 published and 4 unpublished observational studies that included 2,994 subjects were included, of which 921 were managed with APP and 870 were managed with usual care. APP was associated with significant improvement of oxygenation parameters in 381 cases of 19 studies that reported this outcome. Among the 41 studies assessing intubation rates (870 subjects treated with APP and 852 subjects treated with usual care), the intubation rate was 27% (95% CI 19-37%) as compared to 30% (95% CI 20-42%) (P = .71), even when duration of application, use of adjunctive respiratory assist device (high-flow nasal cannula or noninvasive ventilation), and severity of oxygenation deficit were taken into account. There appeared to be a trend toward improved mortality when APP was compared with usual care (11% vs 22%), which was not statistically significant. CONCLUSIONS: APP was associated with improvement of oxygenation but did not reduce the intubation rate in subjects with acute respiratory failure due to COVID-19. This finding is limited by the high heterogeneity and the observational nature of included studies. Randomized controlled clinical studies are needed to definitively assess whether APP could improve key outcome such as intubation rate and mortality in these patients.

4.
JAMA ; 329(14): 1170-1182, 2023 04 11.
Article in English | MEDLINE | ID: covidwho-2303367

ABSTRACT

Importance: Preclinical models suggest dysregulation of the renin-angiotensin system (RAS) caused by SARS-CoV-2 infection may increase the relative activity of angiotensin II compared with angiotensin (1-7) and may be an important contributor to COVID-19 pathophysiology. Objective: To evaluate the efficacy and safety of RAS modulation using 2 investigational RAS agents, TXA-127 (synthetic angiotensin [1-7]) and TRV-027 (an angiotensin II type 1 receptor-biased ligand), that are hypothesized to potentiate the action of angiotensin (1-7) and mitigate the action of the angiotensin II. Design, Setting, and Participants: Two randomized clinical trials including adults hospitalized with acute COVID-19 and new-onset hypoxemia were conducted at 35 sites in the US between July 22, 2021, and April 20, 2022; last follow-up visit: July 26, 2022. Interventions: A 0.5-mg/kg intravenous infusion of TXA-127 once daily for 5 days or placebo. A 12-mg/h continuous intravenous infusion of TRV-027 for 5 days or placebo. Main Outcomes and Measures: The primary outcome was oxygen-free days, an ordinal outcome that classifies a patient's status at day 28 based on mortality and duration of supplemental oxygen use; an adjusted odds ratio (OR) greater than 1.0 indicated superiority of the RAS agent vs placebo. A key secondary outcome was 28-day all-cause mortality. Safety outcomes included allergic reaction, new kidney replacement therapy, and hypotension. Results: Both trials met prespecified early stopping criteria for a low probability of efficacy. Of 343 patients in the TXA-127 trial (226 [65.9%] aged 31-64 years, 200 [58.3%] men, 225 [65.6%] White, and 274 [79.9%] not Hispanic), 170 received TXA-127 and 173 received placebo. Of 290 patients in the TRV-027 trial (199 [68.6%] aged 31-64 years, 168 [57.9%] men, 195 [67.2%] White, and 225 [77.6%] not Hispanic), 145 received TRV-027 and 145 received placebo. Compared with placebo, both TXA-127 (unadjusted mean difference, -2.3 [95% CrI, -4.8 to 0.2]; adjusted OR, 0.88 [95% CrI, 0.59 to 1.30]) and TRV-027 (unadjusted mean difference, -2.4 [95% CrI, -5.1 to 0.3]; adjusted OR, 0.74 [95% CrI, 0.48 to 1.13]) resulted in no difference in oxygen-free days. In the TXA-127 trial, 28-day all-cause mortality occurred in 22 of 163 patients (13.5%) in the TXA-127 group vs 22 of 166 patients (13.3%) in the placebo group (adjusted OR, 0.83 [95% CrI, 0.41 to 1.66]). In the TRV-027 trial, 28-day all-cause mortality occurred in 29 of 141 patients (20.6%) in the TRV-027 group vs 18 of 140 patients (12.9%) in the placebo group (adjusted OR, 1.52 [95% CrI, 0.75 to 3.08]). The frequency of the safety outcomes was similar with either TXA-127 or TRV-027 vs placebo. Conclusions and Relevance: In adults with severe COVID-19, RAS modulation (TXA-127 or TRV-027) did not improve oxygen-free days vs placebo. These results do not support the hypotheses that pharmacological interventions that selectively block the angiotensin II type 1 receptor or increase angiotensin (1-7) improve outcomes for patients with severe COVID-19. Trial Registration: ClinicalTrials.gov Identifier: NCT04924660.


Subject(s)
COVID-19 , Receptor, Angiotensin, Type 1 , Renin-Angiotensin System , Vasodilator Agents , Adult , Female , Humans , Male , Middle Aged , Angiotensin II/metabolism , Angiotensins/administration & dosage , Angiotensins/therapeutic use , COVID-19/complications , COVID-19/mortality , COVID-19/physiopathology , COVID-19/therapy , Hypoxia/drug therapy , Hypoxia/etiology , Hypoxia/mortality , Infusions, Intravenous , Ligands , Oligopeptides/administration & dosage , Oligopeptides/therapeutic use , Randomized Controlled Trials as Topic , Receptor, Angiotensin, Type 1/administration & dosage , Receptor, Angiotensin, Type 1/therapeutic use , Renin-Angiotensin System/drug effects , SARS-CoV-2 , Vasodilator Agents/administration & dosage , Vasodilator Agents/therapeutic use
7.
JPEN J Parenter Enteral Nutr ; 2022 Dec 05.
Article in English | MEDLINE | ID: covidwho-2257611

ABSTRACT

Inflammation and oxidative stress represent physiological response mechanisms to different types of stimuli and injury during critical illness. Its proper regulation is fundamental to cellular and organismal survival and are paramount to outcomes and recovery from critical illness. A proper maintenance of the delicate balance between inflammation, oxidative stress, and immune response is crucial for resolution from critical illness with important implications for patient outcome. The extent of inflammation and oxidative stress under normal conditions is limited by the antioxidant defense system of the human body, whereas the antioxidant capacity is commonly significantly compromised, and serum levels of micronutrients and vitamins significantly depleted in patients who are critically ill. Hence, the provision of antioxidants and anti-inflammatory nutrients may help to reduce the extent of oxidative stress and therefore improve clinical outcomes in patients who are critically ill. As existing evidence of the beneficial effects of antioxidant supplementation in patients who are critically ill is still unclear, actual findings about the most promising anti-inflammatory and antioxidative candidates selenium, vitamin C, zinc, and vitamin D will be discussed in this narrative review. The existing evidence provided so far demonstrates that several factors need to be considered to determine the efficacy of an antioxidant supplementation strategy in patients who are critically ill and indicates the need for adequately designed multicenter prospective randomized control trials to evaluate the clinical significance of different types and doses of micronutrients and vitamins in selected groups of patients with different types of critical illness.

8.
J Intensive Care Med ; 38(7): 651-656, 2023 Jul.
Article in English | MEDLINE | ID: covidwho-2234460

ABSTRACT

Purpose/Background: Pharmacists have been shown to play an important role in the medication management of critically ill patients. Pharmacist interventions in the care of critically ill patients with coronavirus disease 2019 (COVID-19) have not been quantitatively described. Methodology: A single center, retrospective, observational study was conducted at Vanderbilt University Medical Center in Nashville, Tennessee. All adult patients admitted to the COVID-19 intensive care unit (ICU) or Medical ICU with a COVID-19 diagnosis between March 1, 2020, and June 30, 2021, were included. All interventions made by pharmacists were documented electronically, collected, categorized, and analyzed. The primary outcome of this study was the median number of interventions by pharmacists per patient. The secondary outcome was the number of different types of interventions performed. Results: A total of 768 patients were included in the analysis. The median age was 63 years old; 63% of patients were male and 71% were Caucasian. Median hospital length of stay (LOS) was 12 days (interquartile range (IQR) 7-21) and ICU LOS was 5 days (IQR 1-11). The median Sequential Organ Failure Assessment score was 4 (IQR 2-7) and Charlson Comorbidity Index was 3 (IQR 2-5). Mortality at 60 days occurred in 352 patients (46%). Pharmacists performed a total of 7027 interventions for 655 patients with a median number of pharmacist interventions per patient of 6 (IQR 3-14). The most common pharmacist interventions were medication discontinuation (24%), completion of components of the ICU liberation bundle (19%), medication dose adjustment (18%), therapeutic drug monitoring (15%), and medication initiation (10%). Conclusions: Pharmacists made multiple interventions related to medication use and management in critically ill patients with COVID-19. This study adds important information of the evolving role clinical pharmacists play in the care of critical illness, specifically during the COVID-19 pandemic.


Subject(s)
COVID-19 , Adult , Humans , Male , Middle Aged , Female , COVID-19/therapy , Pharmacists , SARS-CoV-2 , COVID-19 Testing , Retrospective Studies , Critical Illness/therapy , Pandemics , Critical Care , Intensive Care Units
9.
Int J Infect Dis ; 128: 223-229, 2023 Mar.
Article in English | MEDLINE | ID: covidwho-2231594

ABSTRACT

OBJECTIVES: Effective and widely available therapies are still needed for outpatients with COVID-19. We aimed to evaluate the efficacy and safety of lopinavir/ritonavir (LPV/r) for early treatment of non-hospitalized individuals diagnosed with COVID-19. METHODS: This randomized, placebo (Plb)-controlled, double-blind, multi-site decentralized clinical trial enrolled non-hospitalized adults with confirmed SARS-CoV-2 infection and six or fewer days of acute respiratory infection symptoms who were randomized to either twice-daily oral LPV/r (400 mg/100 mg) or Plb for 14 days. Daily surveys on study days 1 through 16 and again on study day 28 evaluated symptoms, daily activities, and hospitalization status. The primary outcome was longitudinal change in an ordinal scale based on a combination of symptoms, activity, and hospitalization status through day 15 and was analyzed by use of a Bayesian longitudinal proportional odds logistic regression model for estimating the probability of a superior recovery for LPV/r over Plb (odds ratio >1). RESULTS: Between June 2020 and December 2021, 448 participants were randomized to receive either LPV/r (n = 216) or Plb (n = 221). The mean symptom duration before randomization was 4.3 days (SD 1.3). There were no differences between treatment groups through the first 15 days for the ordinal primary outcome (odds ratio 0.96; 95% credible interval: 0.66 to 1.41). There were 3.2% (n = 7) of LPV/r and 2.7% (n = 6) of Plb participants hospitalized by day 28. Serious adverse events did not differ between groups. CONCLUSION: LPV/r did not significantly improve symptom resolution or reduce hospitalization in non-hospitalized participants with COVID-19. TRIAL REGISTRATION: ClinicalTrials.gov Identifier: NCT04372628.


Subject(s)
COVID-19 , Ritonavir , Adult , Humans , Lopinavir , Bayes Theorem , SARS-CoV-2 , COVID-19 Drug Treatment , Treatment Outcome
10.
Clin Infect Dis ; 2022 May 17.
Article in English | MEDLINE | ID: covidwho-2236202

ABSTRACT

BACKGROUND: COVID-19 mRNA vaccines were authorized in the United States in December 2020. Although vaccine effectiveness (VE) against mild infection declines markedly after several months, limited understanding exists on the long-term durability of protection against COVID-19-associated hospitalization. METHODS: Case control analysis of adults (≥18 years) hospitalized at 21 hospitals in 18 states March 11 - December 15, 2021, including COVID-19 case patients and RT-PCR-negative controls. We included adults who were unvaccinated or vaccinated with two doses of a mRNA vaccine before the date of illness onset. VE over time was assessed using logistic regression comparing odds of vaccination in cases versus controls, adjusting for confounders. Models included dichotomous time (<180 vs ≥180 days since dose two) and continuous time modeled using restricted cubic splines. RESULTS: 10,078 patients were included, 4906 cases (23% vaccinated) and 5172 controls (62% vaccinated). Median age was 60 years (IQR 46-70), 56% were non-Hispanic White, and 81% had ≥1 medical condition. Among immunocompetent adults, VE <180 days was 90% (95%CI: 88-91) vs 82% (95%CI: 79-85) at ≥180 days (p < 0.001). VE declined for Pfizer-BioNTech (88% to 79%, p < 0.001) and Moderna (93% to 87%, p < 0.001) products, for younger adults (18-64 years) [91% to 87%, p = 0.005], and for adults ≥65 years of age (87% to 78%, p < 0.001). In models using restricted cubic splines, similar changes were observed. CONCLUSION: In a period largely pre-dating Omicron variant circulation, effectiveness of two mRNA doses against COVID-19-associated hospitalization was largely sustained through 9 months.

11.
ASAIO J ; 2022 May 07.
Article in English | MEDLINE | ID: covidwho-2230208

ABSTRACT

Coronavirus disease 2019 (COVID-19) has increased the demand for extracorporeal membrane oxygenation (ECMO) and introduced distinct challenges to patient selection for ECMO. Standardized processes for patient selection amidst resource limitations are lacking, and data on ECMO consults are underreported. We retrospectively reviewed consecutive adult ECMO consults for acute respiratory failure received at a single academic medical center from April 1, 2020, to February 28, 2021, and evaluated the implementation of a multidisciplinary selection committee (ECMO Council) and standardized framework for patient selection for ECMO. During the 334-day period, there were 202 total ECMO consults; 174 (86.1%) included a diagnosis of COVID-19. Among all consults, 157 (77.7%) were declined and 41 (20.3%) resulted in the initiation of ECMO. Frequent reasons for decline included the presence of multiple relative contraindications (n = 33), age greater than 60 years (n = 32), and resource limitations (n = 27). The ECMO Council deliberated on every case in which an absolute contraindication was not present (n = 96) via an electronic teleconference platform. Utilizing multidisciplinary consensus together with a standardized process for patient selection in ECMO is feasible during a pandemic and may be reliably exercised over time. Whether such an approach is feasible at other centers remains unknown.

12.
Open Forum Infect Dis ; 10(1): ofac698, 2023 Jan.
Article in English | MEDLINE | ID: covidwho-2212869

ABSTRACT

Background: Coronavirus disease 2019 (COVID-19) vaccine effectiveness (VE) studies are increasingly reporting relative VE (rVE) comparing a primary series plus booster doses with a primary series only. Interpretation of rVE differs from traditional studies measuring absolute VE (aVE) of a vaccine regimen against an unvaccinated referent group. We estimated aVE and rVE against COVID-19 hospitalization in primary-series plus first-booster recipients of COVID-19 vaccines. Methods: Booster-eligible immunocompetent adults hospitalized at 21 medical centers in the United States during December 25, 2021-April 4, 2022 were included. In a test-negative design, logistic regression with case status as the outcome and completion of primary vaccine series or primary series plus 1 booster dose as the predictors, adjusted for potential confounders, were used to estimate aVE and rVE. Results: A total of 2060 patients were analyzed, including 1104 COVID-19 cases and 956 controls. Relative VE against COVID-19 hospitalization in boosted mRNA vaccine recipients versus primary series only was 66% (95% confidence interval [CI], 55%-74%); aVE was 81% (95% CI, 75%-86%) for boosted versus 46% (95% CI, 30%-58%) for primary. For boosted Janssen vaccine recipients versus primary series, rVE was 49% (95% CI, -9% to 76%); aVE was 62% (95% CI, 33%-79%) for boosted versus 36% (95% CI, -4% to 60%) for primary. Conclusions: Vaccine booster doses increased protection against COVID-19 hospitalization compared with a primary series. Comparing rVE measures across studies can lead to flawed interpretations of the added value of a new vaccination regimen, whereas difference in aVE, when available, may be a more useful metric.

13.
Am J Respir Crit Care Med ; 206(11): 1433, 2022 Dec 01.
Article in English | MEDLINE | ID: covidwho-2194461
14.
Chest ; 2022 Aug 08.
Article in English | MEDLINE | ID: covidwho-2177390

ABSTRACT

The COVID-19 pandemic has affected clinicians in many different ways. Clinicians have their own experiences and lessons that they have learned from their work in the pandemic. This article outlines a few lessons learned from the eyes of CHEST Critical Care Editorial Board members, namely practices which will be abandoned, novel practices to be adopted moving forward, and proposed changes to the health care system in general. In an attempt to start the discussion of how health care can grow from the pandemic, the editorial board members outline their thoughts on these lessons learned.

15.
MMWR Morb Mortal Wkly Rep ; 71(5152): 1625-1630, 2022 Dec 30.
Article in English | MEDLINE | ID: covidwho-2204208

ABSTRACT

Monovalent COVID-19 mRNA vaccines, designed against the ancestral strain of SARS-CoV-2, successfully reduced COVID-19-related morbidity and mortality in the United States and globally (1,2). However, vaccine effectiveness (VE) against COVID-19-associated hospitalization has declined over time, likely related to a combination of factors, including waning immunity and, with the emergence of the Omicron variant and its sublineages, immune evasion (3). To address these factors, on September 1, 2022, the Advisory Committee on Immunization Practices recommended a bivalent COVID-19 mRNA booster (bivalent booster) dose, developed against the spike protein from ancestral SARS-CoV-2 and Omicron BA.4/BA.5 sublineages, for persons who had completed at least a primary COVID-19 vaccination series (with or without monovalent booster doses) ≥2 months earlier (4). Data on the effectiveness of a bivalent booster dose against COVID-19 hospitalization in the United States are lacking, including among older adults, who are at highest risk for severe COVID-19-associated illness. During September 8-November 30, 2022, the Investigating Respiratory Viruses in the Acutely Ill (IVY) Network§ assessed effectiveness of a bivalent booster dose received after ≥2 doses of monovalent mRNA vaccine against COVID-19-associated hospitalization among immunocompetent adults aged ≥65 years. When compared with unvaccinated persons, VE of a bivalent booster dose received ≥7 days before illness onset (median = 29 days) against COVID-19-associated hospitalization was 84%. Compared with persons who received ≥2 monovalent-only mRNA vaccine doses, relative VE of a bivalent booster dose was 73%. These early findings show that a bivalent booster dose provided strong protection against COVID-19-associated hospitalization in older adults and additional protection among persons with previous monovalent-only mRNA vaccination. All eligible persons, especially adults aged ≥65 years, should receive a bivalent booster dose to maximize protection against COVID-19 hospitalization this winter season. Additional strategies to prevent respiratory illness, such as masking in indoor public spaces, should also be considered, especially in areas where COVID-19 community levels are high (4,5).


Subject(s)
COVID-19 , Humans , Aged , COVID-19/epidemiology , COVID-19/prevention & control , SARS-CoV-2 , COVID-19 Vaccines , Vaccine Efficacy , Hospitalization , RNA, Messenger , Vaccines, Combined
16.
BMJ ; 379: e071966, 2022 12 07.
Article in English | MEDLINE | ID: covidwho-2152944

ABSTRACT

OBJECTIVE: To determine the efficacy and safety of awake prone positioning versus usual care in non-intubated adults with hypoxemic respiratory failure due to covid-19. DESIGN: Systematic review with frequentist and bayesian meta-analyses. STUDY ELIGIBILITY: Randomized trials comparing awake prone positioning versus usual care in adults with covid-19 related hypoxemic respiratory failure. Information sources were Medline, Embase, and the Cochrane Central Register of Controlled Trials from inception to 4 March 2022. DATA EXTRACTION AND SYNTHESIS: Two reviewers independently extracted data and assessed risk of bias. Random effects meta-analyses were performed for the primary and secondary outcomes. Bayesian meta-analyses were performed for endotracheal intubation and mortality outcomes. GRADE certainty of evidence was assessed for outcomes. MAIN OUTCOME MEASURES: The primary outcome was endotracheal intubation. Secondary outcomes were mortality, ventilator-free days, intensive care unit (ICU) and hospital length of stay, escalation of oxygen modality, change in oxygenation and respiratory rate, and adverse events. RESULTS: 17 trials (2931 patients) met the eligibility criteria. 12 trials were at low risk of bias, three had some concerns, and two were at high risk. Awake prone positioning reduced the risk of endotracheal intubation compared with usual care (crude average 24.2% v 29.8%, relative risk 0.83, 95% confidence interval 0.73 to 0.94; high certainty). This translates to 55 fewer intubations per 1000 patients (95% confidence interval 87 to 19 fewer intubations). Awake prone positioning did not significantly affect secondary outcomes, including mortality (15.6% v 17.2%, relative risk 0.90, 0.76 to 1.07; high certainty), ventilator-free days (mean difference 0.97 days, 95% confidence interval -0.5 to 3.4; low certainty), ICU length of stay (-2.1 days, -4.5 to 0.4; low certainty), hospital length of stay (-0.09 days, -0.69 to 0.51; moderate certainty), and escalation of oxygen modality (21.4% v 23.0%, relative risk 1.04, 0.74 to 1.44; low certainty). Adverse events related to awake prone positioning were uncommon. Bayesian meta-analysis showed a high probability of benefit with awake prone positioning for endotracheal intubation (non-informative prior, mean relative risk 0.83, 95% credible interval 0.70 to 0.97; posterior probability for relative risk <0.95=96%) but lower probability for mortality (0.90, 0.73 to 1.13; <0.95=68%). CONCLUSIONS: Awake prone positioning compared with usual care reduces the risk of endotracheal intubation in adults with hypoxemic respiratory failure due to covid-19 but probably has little to no effect on mortality or other outcomes. SYSTEMATIC REVIEW REGISTRATION: PROSPERO CRD42022314856.


Subject(s)
COVID-19 , Respiratory Insufficiency , Adult , Humans , COVID-19/complications , Bayes Theorem , Wakefulness , Prone Position , Randomized Controlled Trials as Topic , Respiratory Insufficiency/etiology , Respiratory Insufficiency/therapy , Oxygen
17.
N Engl J Med ; 387(19): 1759-1769, 2022 11 10.
Article in English | MEDLINE | ID: covidwho-2112693

ABSTRACT

BACKGROUND: Invasive mechanical ventilation in critically ill adults involves adjusting the fraction of inspired oxygen to maintain arterial oxygen saturation. The oxygen-saturation target that will optimize clinical outcomes in this patient population remains unknown. METHODS: In a pragmatic, cluster-randomized, cluster-crossover trial conducted in the emergency department and medical intensive care unit at an academic center, we assigned adults who were receiving mechanical ventilation to a lower target for oxygen saturation as measured by pulse oximetry (Spo2) (90%; goal range, 88 to 92%), an intermediate target (94%; goal range, 92 to 96%), or a higher target (98%; goal range, 96 to 100%). The primary outcome was the number of days alive and free of mechanical ventilation (ventilator-free days) through day 28. The secondary outcome was death by day 28, with data censored at hospital discharge. RESULTS: A total of 2541 patients were included in the primary analysis. The median number of ventilator-free days was 20 (interquartile range, 0 to 25) in the lower-target group, 21 (interquartile range, 0 to 25) in the intermediate-target group, and 21 (interquartile range, 0 to 26) in the higher-target group (P = 0.81). In-hospital death by day 28 occurred in 281 of the 808 patients (34.8%) in the lower-target group, 292 of the 859 patients (34.0%) in the intermediate-target group, and 290 of the 874 patients (33.2%) in the higher-target group. The incidences of cardiac arrest, arrhythmia, myocardial infarction, stroke, and pneumothorax were similar in the three groups. CONCLUSIONS: Among critically ill adults receiving invasive mechanical ventilation, the number of ventilator-free days did not differ among groups in which a lower, intermediate, or higher Spo2 target was used. (Supported by the National Heart, Lung, and Blood Institute and others; PILOT ClinicalTrials.gov number, NCT03537937.).


Subject(s)
Critical Illness , Oxygen , Respiration, Artificial , Adult , Humans , Critical Illness/therapy , Hospital Mortality , Intensive Care Units , Oxygen/administration & dosage , Oxygen/blood , Oxygen/therapeutic use , Respiration, Artificial/methods , Critical Care/methods , Cross-Over Studies , Emergency Service, Hospital , Academic Medical Centers , Oximetry
18.
J Thorac Cardiovasc Surg ; 2022 Sep 10.
Article in English | MEDLINE | ID: covidwho-2105500

ABSTRACT

OBJECTIVES: Refractory hypoxemia can occur in patients with acute respiratory distress syndrome from COVID-19 despite support with venovenous (VV) extracorporeal membrane oxygenation (ECMO). Parallel ECMO circuits can be used to increase physiologic support. We report our clinical experience using ECMO circuits in parallel for select patients with persistent severe hypoxemia despite the use of a single ECMO circuit. METHODS: We performed a retrospective cohort study of all patients with COVID-19-related acute respiratory distress syndrome who received VV-ECMO with an additional circuit in parallel at Vanderbilt University Medical Center between March 1, 2020, and March 1, 2022. We report demographic characteristics and clinical characteristics including ECMO settings, mechanical ventilator settings, use of adjunctive therapies, and arterial blood gas results after initial cannulation, before and after receipt of a second ECMO circuit in parallel, and before removal of the circuit in parallel, and outcomes. RESULTS: Of 84 patients with COVID-19 who received VV-ECMO during the study period, 22 patients (26.2%) received a circuit in parallel. The median duration of ECMO was 40.0 days (interquartile range, 31.6-53.1 days), of which 19.0 days (interquartile range, 13.0-33.0 days) were spent with a circuit in parallel. Of the 22 patients who received a circuit in parallel, 16 (72.7%) survived to hospital discharge and 6 (27.3%) died before discharge. CONCLUSIONS: In select patients, the additional use of an ECMO circuit in parallel can increase ECMO blood flow and improve oxygenation while allowing for lung-protective mechanical ventilation and excellent outcomes.

19.
Trials ; 23(1): 273, 2022 Apr 08.
Article in English | MEDLINE | ID: covidwho-2098437

ABSTRACT

BACKGROUND: Coronavirus disease 2019 (COVID-19) has a heterogeneous outcome in individuals from remaining asymptomatic to death. In a majority of cases, mild symptoms are present that do not require hospitalization and can be successfully treated in the outpatient setting, though symptoms may persist for a long duration. We hypothesize that drugs suitable for decentralized study in outpatients will have efficacy among infected outpatients METHODS: The TREAT NOW platform is designed to accommodate testing multiple agents with the ability to incorporate new agents in the future. TREAT NOW is an adaptive, blinded, multi-center, placebo-controlled superiority randomized clinical trial which started with two active therapies (hydroxychloroquine and lopinavir/ritonavir) and placebo, with the hydroxychloroquine arm dropped shortly after enrollment began due to external evidence. Each arm has a target enrollment of 300 participants who will be randomly assigned in an equal allocation to receive either an active therapy or placebo twice daily for 14 days with daily electronic surveys collected over days 1 through 16 and on day 29 to evaluate symptoms and a modified COVID-19 ordinal outcome scale. Participants are enrolled remotely by telephone and consented with a digital interface, study drug is overnight mailed to study participants, and data collection occurs electronically without in-person interactions. DISCUSSION: If effective treatments for COVID-19 can be identified for individuals in the outpatient setting before they advance to severe disease, it will prevent progression to more severe disease, reduce the need for hospitalization, and shorten the duration of symptoms. The novel decentralized, "no touch" approach used by the TREAT NOW platform has distinction advantages over traditional in-person trials to reach broader populations and perform study procedures in a pragmatic yet rigorous manner. TRIAL REGISTRATION: ClinicalTrials.gov NCT04372628. Registered on April 30, 2020. First posted on May 4, 2020.


Subject(s)
COVID-19 Drug Treatment , Antiviral Agents/adverse effects , Hospitalization , Humans , Hydroxychloroquine/adverse effects , Outpatients , Randomized Controlled Trials as Topic , SARS-CoV-2 , Treatment Outcome
20.
Vaccine ; 40(48): 6979-6986, 2022 Nov 15.
Article in English | MEDLINE | ID: covidwho-2082297

ABSTRACT

BACKGROUND: Test-negative design (TND) studies have produced validated estimates of vaccine effectiveness (VE) for influenza vaccine studies. However, syndrome-negative controls have been proposed for differentiating bias and true estimates in VE evaluations for COVID-19. To understand the use of alternative control groups, we compared characteristics and VE estimates of syndrome-negative and test-negative VE controls. METHODS: Adults hospitalized at 21 medical centers in 18 states March 11-August 31, 2021 were eligible for analysis. Case patients had symptomatic acute respiratory infection (ARI) and tested positive for SARS-CoV-2. Control groups were test-negative patients with ARI but negative SARS-CoV-2 testing, and syndrome-negative controls were without ARI and negative SARS-CoV-2 testing. Chi square and Wilcoxon rank sum tests were used to detect differences in baseline characteristics. VE against COVID-19 hospitalization was calculated using logistic regression comparing adjusted odds of prior mRNA vaccination between cases hospitalized with COVID-19 and each control group. RESULTS: 5811 adults (2726 cases, 1696 test-negative controls, and 1389 syndrome-negative controls) were included. Control groups differed across characteristics including age, race/ethnicity, employment, previous hospitalizations, medical conditions, and immunosuppression. However, control-group-specific VE estimates were very similar. Among immunocompetent patients aged 18-64 years, VE was 93 % (95 % CI: 90-94) using syndrome-negative controls and 91 % (95 % CI: 88-93) using test-negative controls. CONCLUSIONS: Despite demographic and clinical differences between control groups, the use of either control group produced similar VE estimates across age groups and immunosuppression status. These findings support the use of test-negative controls and increase confidence in COVID-19 VE estimates produced by test-negative design studies.


Subject(s)
COVID-19 , Influenza Vaccines , Influenza, Human , Humans , Adult , United States/epidemiology , Influenza, Human/prevention & control , COVID-19 Vaccines , SARS-CoV-2 , COVID-19/prevention & control , COVID-19 Testing , Vaccine Efficacy , Case-Control Studies , Hospitalization , Syndrome
SELECTION OF CITATIONS
SEARCH DETAIL